Composites of gellan gum hydrogel enzymatically mineralized with calcium-zinc phosphate for bone regeneration with antibacterial activity

J Tissue Eng Regen Med. 2017 May;11(5):1610-1618. doi: 10.1002/term.2062. Epub 2015 Jul 15.

Abstract

Gellan gum hydrogels functionalized with alkaline phosphatase were enzymatically mineralized with phosphates in mineralization medium containing calcium (Ca) and zinc (Zn) to improve their suitability as biomaterials for bone regeneration. The aims of the study were to endow mineralized hydrogels with antibacterial activity by incorporation of Zn in the inorganic phase, and to investigate the effect of Zn incorporation on the amount and type of mineral formed, the compressive modulus of the mineralized hydrogels and on their ability to support adhesion and growth of MC3T3-E1 osteoblast-like cells. Mineralization medium contained glycerophosphate (0.05 m) and three different molar Ca:Zn ratios, 0.05:0, 0.04:0.01 and 0.025:0.025 (all mol/dm3 ), hereafter referred to as A, B and C, respectively. FTIR, SAED and TEM analysis revealed that incubation for 14 days caused the formation of predominantly amorphous mineral phases in sample groups A, B and C. The presence of Zn in sample groups B and C was associated with a drop in the amount of mineral formed and a smaller mineral deposit morphology, as observed by SEM. ICP-OES revealed that Zn was preferentially incorporated into mineral compared to Ca. Mechanical testing revealed a decrease in compressive modulus in sample group C. Sample groups B and C, but not A, showed antibacterial activity against biofilm-forming, methicillin-resistant Staphylococcus aureus. All sample groups supported cell growth. Zn incorporation increased the viable cell number. The highest values were seen on sample group C. In conclusion, the sample group containing the most Zn, i.e. group C, appears to be the most promising. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords: antibacterial; composite; gellan gum; hydrogel; mineralization; zinc.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents* / pharmacology
  • Bone Regeneration / drug effects*
  • Calcification, Physiologic / drug effects*
  • Calcium Phosphates* / chemistry
  • Calcium Phosphates* / pharmacology
  • Cell Line
  • Hydrogels* / chemistry
  • Hydrogels* / pharmacology
  • Methicillin-Resistant Staphylococcus aureus / growth & development*
  • Mice
  • Osteoblasts / cytology
  • Osteoblasts / metabolism*
  • Phosphates* / chemistry
  • Phosphates* / pharmacology
  • Polysaccharides, Bacterial* / chemistry
  • Polysaccharides, Bacterial* / pharmacology
  • Zinc Compounds* / chemistry
  • Zinc Compounds* / pharmacology

Substances

  • Anti-Bacterial Agents
  • Calcium Phosphates
  • Hydrogels
  • Phosphates
  • Polysaccharides, Bacterial
  • Zinc Compounds
  • zinc phosphate
  • gellan gum
  • calcium phosphate