Cavity-Assisted Manipulation of Freely Rotating Silicon Nanorods in High Vacuum

Nano Lett. 2015 Aug 12;15(8):5604-8. doi: 10.1021/acs.nanolett.5b02302. Epub 2015 Jul 15.

Abstract

Optical control of nanoscale objects has recently developed into a thriving field of research with far-reaching promises for precision measurements, fundamental quantum physics and studies on single-particle thermodynamics. Here, we demonstrate the optical manipulation of silicon nanorods in high vacuum. Initially, we sculpture these particles into a silicon substrate with a tailored geometry to facilitate their launch into high vacuum by laser-induced mechanical cleavage. We manipulate and trace their center-of-mass and rotational motion through the interaction with an intense intracavity field. Our experiments show that the anisotropy of the nanorotors leads to optical forces that are three times stronger than on silicon nanospheres of the same mass. The optical torque experienced by the spinning rods will enable cooling of the rotational motion and torsional optomechanics in a dissipation-free environment.

Keywords: Nanoparticle launching; cavity optomechanics; nanoparticle detection; silicon nanorods.

Publication types

  • Research Support, Non-U.S. Gov't