Chemokine biomarkers in central nervous system tissue and cerebrospinal fluid in the Theiler's virus model mirror those in multiple sclerosis

Cytokine. 2015 Dec;76(2):577-580. doi: 10.1016/j.cyto.2015.06.010. Epub 2015 Jun 30.

Abstract

Chemokines have increasingly been implicated in inflammatory and infectious disease of the central nervous system, both as biomarkers and as molecules important in pathogenesis. Multiple sclerosis is a disabling disease of unknown etiology, and recently chemokines have been identified as being upregulated molecules in the disease. We were interested in how the chemokine expression patterns in the central nervous system of a viral model of multiple sclerosis, Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), compared to that in humans with multiple sclerosis. Cerebrospinal fluid and spinal cord tissue were analyzed for expression of a range of cytokines and chemokines. Three chemokines, CXCL10, CXCL9, and CCL5 were strongly and specifically upregulated in both the cerebrospinal fluid and spinal cord in chronic disease, a pattern identical to that in multiple sclerosis. These data, the first study of cytokines in central nervous system tissue and cerebrospinal fluid in TMEV-IDD, support the hypothesis that multiple sclerosis is caused by chronic infection with an as-yet unidentified pathogen, possibly a picornavirus.

Keywords: Biomarkers; Cerebrospinal fluid; Multiple sclerosis; Theiler’s virus model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / cerebrospinal fluid
  • Biomarkers / metabolism*
  • Chemokines / cerebrospinal fluid
  • Chemokines / genetics
  • Chemokines / metabolism*
  • Female
  • Hydrogen-Ion Concentration
  • Immunoglobulin G / cerebrospinal fluid
  • Mice
  • Models, Biological*
  • Multiple Sclerosis / cerebrospinal fluid
  • Multiple Sclerosis / metabolism*
  • RNA, Messenger / genetics
  • Spinal Cord / metabolism*
  • Theilovirus / physiology*

Substances

  • Biomarkers
  • Chemokines
  • Immunoglobulin G
  • RNA, Messenger