Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes

J Biomed Opt. 2015 Jul;20(7):78001. doi: 10.1117/1.JBO.20.7.078001.

Abstract

The objective is to characterize the impact of different ablation parameters on the thermal load during corneal refractive surgery by means of excimer laser ablation on porcine eyes. One hundred eleven ablations were performed in 105 porcine eyes. Each ablation was recorded using infrared thermography and analyzed mainly based on the two tested local frequencies (40 Hz, clinical local frequency; 1000 Hz, no local frequency). The change in peak corneal temperature was analyzed with respect to varying ablation parameters [local frequency, system repetition rate, pulse energy, optical zone (OZ) size, and refractive correction]. Transepithelial ablations were also compared to intrastromal ablations. The average of the baseline temperature across all eyes was 20.5°C±1.1 (17.7°C to 22.2°C). Average of the change in peak corneal temperature for all clinical local frequency ablations was 5.8°C±0.8 (p=3.3E-53 to baseline), whereas the average was 9.0°C±1.5 for all no local frequency ablations (p=1.8E-35 to baseline, 1.6E-16 to clinical local frequency ablations). A logarithmic relationship was observed between the changes in peak corneal temperature with increasing local frequency. For clinical local frequency, change in peak corneal temperature was comparatively flat (r 2 =0.68 with a range of 1.5°C) with increasing system repetition rate and increased linearly with increasing OZ size (r 2 =0.95 with a range of 2.4°C). Local frequency controls help maintain safe corneal temperature increase during excimer laser ablations. Transepithelial ablations induce higher thermal load compared to intrastromal ablations, indicating a need for stronger thermal controls in transepithelial refractive procedures.

MeSH terms

  • Animals
  • Body Temperature / radiation effects*
  • Cornea / physiology
  • Cornea / radiation effects*
  • Cornea / surgery*
  • Corneal Surgery, Laser*
  • Lasers, Excimer*
  • Signal Processing, Computer-Assisted
  • Swine