Timing characteristics of body segments during the maximal instep kick in experienced football players

J Sports Med Phys Fitness. 2016 Jul-Aug;56(7-8):849-56. Epub 2015 Jul 1.

Abstract

Background: The first aim of this study was to describe duration and relative timing of the phases of the maximal instep kick. The second aim was to describe the concurrence of maximal range of motion, maximal angular acceleration, maximal angular deceleration and maximal angular velocity of body segments with four key points.

Methods: Twenty experienced football players performed three maximal instep kicks. The kicks were analysed using a full body, three-dimensional motion capture system. Camera recordings determined kicking leg events. The concurrence of peak kinematics of body segments with four key points was calculated.

Results: Duration and timing of five phases were identified. Key point maximal hip extension (51.4±5.0%) concurred significantly with maximal range of motion (ROM) of shoulder extension. Key point maximal knee flexion (63.6±5.2%) concurred significantly with maximal angular acceleration of spine flexion and pelvis posterior tilt. Key point knee flexion 90 degrees (69.3±4.9%) concurred significantly with maximal angular velocity of shoulder flexion and spine flexion, maximal angular deceleration of hip flexion and maximal angular acceleration of knee extension. Key point ball impact (75.2±5.2%) concurred significantly with maximal ROM of hip deflexion and pelvis anterior rotation and with maximal angular deceleration of spine flexion and pelvis anterior rotation.

Conclusions: This study demonstrated that eleven peak kinematics of upper body and kicking leg segments, significantly concurred with four kicking leg positions. These results provide Key points for kicking coordination and stress the importance of dynamical coupling as a kicking mechanism.

MeSH terms

  • Acceleration
  • Adolescent
  • Biomechanical Phenomena
  • Humans
  • Lower Extremity / physiology*
  • Male
  • Motor Skills / physiology*
  • Pelvis / physiology
  • Range of Motion, Articular
  • Rotation
  • Shoulder / physiology
  • Soccer / physiology*
  • Spine / physiology
  • Time Factors
  • Time and Motion Studies
  • Young Adult