Tissue-specificity of heparan sulfate biosynthetic machinery in cancer

Cell Adh Migr. 2015;9(6):452-9. doi: 10.1080/19336918.2015.1049801.

Abstract

Heparan sulfate (HS) proteoglycans are key components of cell microenvironment and fine structure of their polysaccharide HS chains plays an important role in cell-cell interactions, adhesion, migration and signaling. It is formed on non-template basis, so, structure and functional activity of HS biosynthetic machinery is crucial for correct HS biosynthesis and post-synthetic modification. To reveal cancer-related changes in transcriptional pattern of HS biosynthetic system, the expression of HS metabolism-involved genes (EXT1/2, NDST1/2, GLCE, 3OST1/HS3ST1, SULF1/2, HPSE) in human normal (fibroblasts, PNT2) and cancer (MCF7, LNCaP, PC3, DU145, H157, H647, A549, U2020, U87, HT116, KRC/Y) cell lines and breast, prostate, colon tumors was studied. Real-time RT-PCR and Western-blot analyses revealed specific transcriptional patterns and expression levels of HS biosynthetic system both in different cell lines in vitro and cancers in vivo. Balance between transcriptional activities of elongation- and post-synthetic modification- involved genes was suggested as most informative parameter for HS biosynthetic machinery characterization. Normal human fibroblasts showed elongation-oriented HS biosynthesis, while PNT2 prostate epithelial cells had modification-oriented one. However, cancer epithelial cells demonstrated common tendency to acquire fibroblast-like elongation-oriented mode of HS biosynthetic system. Surprisingly, aggressive metastatic cancer cells (U2020, DU145, KRC/Y) retained modification-oriented HS biosynthesis similar to normal PNT2 cells, possibly enabling the cells to keep like-to-normal cell surface glycosylation pattern to escape antimetastatic control. The obtained results show the cell type-specific changes of HS-biosynthetic machinery in cancer cells in vitro and tissue-specific changes in different cancers in vivo, supporting a close involvement of HS biosynthetic system in carcinogenesis.

Keywords: biosynthesis; breast cancer; colon cancer; expression pattern; extracellular matrix; heparan sulfate; prostate cancer; proteoglycan; tissue-specificity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinogenesis*
  • Cell Line, Tumor
  • Cellular Microenvironment / genetics
  • Fibroblasts / metabolism
  • Gene Expression Regulation, Neoplastic
  • Heparitin Sulfate / biosynthesis*
  • Heparitin Sulfate / metabolism
  • Humans
  • Neoplasm Proteins / biosynthesis*
  • Neoplasm Proteins / genetics
  • Neoplasms / genetics
  • Neoplasms / metabolism*
  • Neoplasms / pathology
  • Organ Specificity

Substances

  • Neoplasm Proteins
  • Heparitin Sulfate