New Approaches to Measuring Sticky Molecules: Improvement of Instrumental Response Times Using Active Passivation

J Phys Chem A. 2016 Mar 10;120(9):1347-57. doi: 10.1021/acs.jpca.5b04395. Epub 2015 Jul 7.

Abstract

A novel method has been developed to improve sampling system response times for nominally "sticky" molecules such as HNO3 and NH3. The method reported here makes use of active, continuous passivation, where the instrument interfaces are continuously exposed to 0.01-1 ppm of fluorinated acidic or basic surfactants. To reduce HNO3 response times, perfluoroheptanoic acid and perfluorobutanesulfonic acid vapors are evaluated as passivation species. 1H,1H-perfluorooctylamine is used to improve NH3 response times. The resulting time responses using the perfluoroalkanoic acids are on the order of 0.4-0.7 s for a 75% quantitative recovery of HNO3, and 1-5 s for 90% recovery. Similar response time improvements are seen in detection of NH3 using perfluorooctylamine (<1 s for a 75% recovery, ∼ 2 s for 90% recovery). This generally applicable methodology significantly improves the capability of eddy covariance flux and real-time plume-based measurements of highly polar molecules that have historically been hampered by slow response times due to adsorption on sampling system surfaces. The utility of this approach is demonstrated by field measurements of HNO3 eddy covariance fluxes in a central U.S. prairie.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.