The ubiquitous nature of multivesicular release

Trends Neurosci. 2015 Jul;38(7):428-38. doi: 10.1016/j.tins.2015.05.008. Epub 2015 Jun 19.

Abstract

'Simplicity is prerequisite for reliability' (E.W. Dijkstra [1]) Presynaptic action potentials trigger the fusion of vesicles to release neurotransmitter onto postsynaptic neurons. Each release site was originally thought to liberate at most one vesicle per action potential in a probabilistic fashion, rendering synaptic transmission unreliable. However, the simultaneous release of several vesicles, or multivesicular release (MVR), represents a simple mechanism to overcome the intrinsic unreliability of synaptic transmission. MVR was initially identified at specialized synapses but is now known to be common throughout the brain. MVR determines the temporal and spatial dispersion of transmitter, controls the extent of receptor activation, and contributes to adapting synaptic strength during plasticity and neuromodulation. MVR consequently represents a widespread mechanism that extends the dynamic range of synaptic processing.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Brain / physiology*
  • Humans
  • Neurons / cytology
  • Neurotransmitter Agents / metabolism*
  • Synapses / physiology*
  • Synaptic Vesicles / metabolism*

Substances

  • Neurotransmitter Agents