Proteomic responses to environmentally induced oxidative stress

J Exp Biol. 2015 Jun;218(Pt 12):1867-79. doi: 10.1242/jeb.116475.

Abstract

Environmental (acute and chronic temperature, osmotic, hypoxic and pH) stress challenges the cellular redox balance and can lead to the increased production of reactive oxygen species (ROS). This review provides an overview of the reactions producing and scavenging ROS in the mitochondria, endoplasmic reticulum (ER) and peroxisome. It then compares these reactions with the findings of a number of studies investigating the proteomic responses of marine organisms to environmentally induced oxidative stress. These responses indicate that the thioredoxin-peroxiredoxin system is possibly more frequently recruited to scavenge H2O2 than the glutathione system. Isoforms of superoxide dismutase (SOD) are not ubiquitously induced in parallel, suggesting that SOD scavenging activity is sometimes sufficient. The glutathione system plays an important role in some organisms and probably also contributes to protecting protein thiols during environmental stress. Synthesis pathways of cysteine and selenocysteine, building blocks for glutathione and glutathione peroxidase, also play an important role in scavenging ROS during stress. The increased abundance of glutaredoxin and DyP-type peroxidase suggests a need for regulating the deglutathionylation of proteins and scavenging of peroxynitrite. Reducing equivalents for these scavenging reactions are generated by proteins of the pentose phosphate pathway and by NADP-dependent isocitrate dehydrogenase. Furthermore, proteins representing reactions of the tricarboxylic acid cycle and the electron transport system generating NADH and ROS, including those of complex I, II and III, are frequently reduced in abundance with stress. Protein maturation in the ER likely represents another source of ROS during environmental stress, as indicated by simultaneous changes in ER chaperones and antioxidant proteins. Although there are still too few proteomic analyses of non-model organisms exposed to environmental stress for a general pattern to emerge, hyposaline and low pH stress show different responses from temperature and hypoxic stress. Furthermore, comparisons of closely related congeners differing in stress tolerance start to provide insights into biochemical processes contributing to adaptive differences, but more of these comparisons are needed to draw general conclusions. To fully take advantage of a systems approach, studies with longer time courses, including several tissues and more species comparisons are needed.

Keywords: Endoplasmic reticulum; Environmental proteomics; Glutathione; Mitochondria; NAD(H); NADP(H); Peroxiredoxin; Peroxisome; Reactive oxygen species; Thioredoxin.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Aquatic Organisms / metabolism
  • Citric Acid Cycle
  • Endoplasmic Reticulum / metabolism
  • Mitochondria / metabolism
  • Oxidative Stress / physiology*
  • Peroxisomes / metabolism
  • Proteome / metabolism*
  • Reactive Oxygen Species / metabolism

Substances

  • Proteome
  • Reactive Oxygen Species