Developing analytical approaches to explore the connection between endocrine-active pharmaceuticals in water to effects in fish

Anal Bioanal Chem. 2015 Aug;407(21):6481-92. doi: 10.1007/s00216-015-8813-0. Epub 2015 Jun 16.

Abstract

The emphasis of this research project was to develop and optimize a solid-phase extraction method and high-performance liquid chromatography-electrospray ionization-mass spectrometry method, such that a linkage between the detection of endocrine-active pharmaceuticals (EAPs) in the aquatic environment and subsequent effects on fish populations could eventually be studied. Four EAPs were studied: tamoxifen (TAM), exemestane (EXE), letrozole (LET), anastrozole (ANA); and three TAM metabolites: 4-hydroxytamoxifen, e/z endoxifen, and n-desmethyl tamoxifen. In aqueous matrices, the use of isotopically labeled standards for the EAPs allowed for the generation of good recoveries, greater than 80 %, and low relative standard deviations (% RSDs) (3 to 27 %). TAM metabolites had lower recoveries in the spiked water matrices: 35 to 93 % in waste/source water compared to 58 to 110 % in DI water. The precision in DI water was acceptable ranging from 8 to 38 % RSD. However, the precision in real environmental wastewaters could be poor, ranging from 15 to 120 % RSD, dependent upon unique matrix effects. In plasma, the overall recoveries of the EAPs were acceptable: 88 to 110 %, with %RSDs of 6 to 18 % (Table 3). The spiked recoveries of the TAM metabolites from plasma were good, ranging from 77 to 120 %, with %RSDs ranging from 27 to 32 %. Two of the TAM metabolites, 4-hydroxytamoxifen and n-desmethyl tamoxifen, were confirmed in most of the environmental aqueous samples. The discovery of TAM metabolites demonstrates that the source of the TAM metabolites, TAM, is constant, introducing a pseudo-persistence of this chemical into the environment.

MeSH terms

  • Animals
  • Chromatography, Liquid
  • Endocrine Disruptors / toxicity*
  • Fishes
  • Limit of Detection
  • Tandem Mass Spectrometry
  • Water Pollutants, Chemical / toxicity*

Substances

  • Endocrine Disruptors
  • Water Pollutants, Chemical