Exfoliated carbon nitride nanosheets decorated with NiS as an efficient noble-metal-free visible-light-driven photocatalyst for hydrogen evolution

Phys Chem Chem Phys. 2015 Jul 14;17(26):17355-61. doi: 10.1039/c5cp01657f.

Abstract

A binary composite composed of two dimensional (2D) ultrathin carbon nitride (C3N4) nanosheets and NiS nanoparticles was synthesized and applied as a noble-metal-free photocatalyst for hydrogen evolution under visible light irradiation. The ultrathin nanosheets of C3N4 were obtained by a facile liquid exfoliation method and used as 2D supports for the deposition of NiS nanoparticles. In the binary composite, the ultrathin C3N4 nanosheets acted as a visible light responding semiconductor, and the NiS nanoparticles served as a noble-metal-free cocatalyst. The binary composite with an optimized composition gave a hydrogen evolution rate comparable to that of Pt modified C3N4. Moreover, compared to bulk C3N4, the exfoliated C3N4 nanosheets distinctly improve the photocatalytic performance for hydrogen evolution. The photocatalytic results combined with photoelectrochemical experiments show that C3N4 with an ultrathin structure promotes the electron-hole separation and transportation during the process of the photoinduced hydrogen evolution. This study displays a facile method to build a low-cost but effective photocatalyst for hydrogen production under visible light irradiation.