Longwave infrared, single-frequency, tunable, pulsed optical parametric oscillator based on orientation-patterned GaAs for gas sensing

Opt Lett. 2015 Jun 15;40(12):2676-9. doi: 10.1364/OL.40.002676.

Abstract

We demonstrate a nanosecond single-frequency nested cavity optical parametric oscillator (NesCOPO) based on orientation-patterned GaAs (OP-GaAs). Its low threshold energy of 10 μJ enables to pump it with a pulsed single-frequency Tm:YAP microlaser. Stable single-longitudinal-mode emission is obtained owing to Vernier spectral filtering provided by the dual-cavity doubly-resonant NesCOPO scheme. Crystal temperature tuning covers the 10.3-10.9 μm range with a quasi-phase-matching period of 72.6 μm. A first step toward the implementation of this device in a differential absorption lidar is demonstrated by carrying out short-range standoff detection of ammonia vapor around 10.4 μm. Owing to the single-frequency emission, interferences due to absorption by atmospheric water vapor can be discriminated from the analyte signal.