Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss

Exp Eye Res. 2015 Dec:141:111-24. doi: 10.1016/j.exer.2015.06.006. Epub 2015 Jun 9.

Abstract

Glaucoma is a disease characterized by progressive axonal pathology and death of retinal ganglion cells (RGCs), which causes structural changes in the optic nerve head and irreversible vision loss. Several experimental models of glaucomatous optic neuropathy (GON) have been developed, primarily in non-human primates and, more recently and commonly, in rodents. These models provide important research tools to study the mechanisms underlying glaucomatous damage. Moreover, experimental GON provides the ability to quantify and monitor risk factors leading to RGC loss such as the level of intraocular pressure, axonal health and the RGC population. Using these experimental models we are able to gain a better understanding of GON, which allows for the development of potential neuroprotective strategies. Here we review the advantages and disadvantages of the relevant and most often utilized methods for evaluating axonal degeneration and RGC loss in GON. Axonal pathology in GON includes functional disruption of axonal transport (AT) and structural degeneration. Horseradish peroxidase (HRP), rhodamine-B-isothiocyanate (RITC) and cholera toxin-B (CTB) fluorescent conjugates have proven to be effective reporters of AT. Also, immunohistochemistry (IHC) for endogenous AT-associated proteins is often used as an indicator of AT function. Similarly, structural degeneration of axons in GON can be investigated via changes in the activity and expression of key axonal enzymes and structural proteins. Assessment of axonal degeneration can be measured by direct quantification of axons, qualitative grading, or a combination of both methods. RGC loss is the most frequently quantified variable in studies of experimental GON. Retrograde tracers can be used to quantify RGC populations in rodents via application to the superior colliculus (SC). In addition, in situ IHC for RGC-specific proteins is a common method of RGC quantification used in many studies. Recently, transgenic mouse models that express fluorescent proteins under the Thy-1 promoter have been examined for their potential to provide specific and selective labeling of RGCs for the study of GON. While these methods represent important advances in assessing the structural and functional integrity of RGCs, each has its advantages and disadvantages; together they provide an extensive toolbox for the study of GON.

Keywords: Automated quantification; Axonal degeneration; Fluorescence microscopy; Glaucoma; Glaucomatous optic neuropathy; Immunohistochemistry; Quantification methods; Retrograde tracer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Axonal Transport
  • Axons / metabolism
  • Axons / pathology*
  • Disease Models, Animal
  • Glaucoma* / complications
  • Glaucoma* / metabolism
  • Glaucoma* / pathology
  • Humans
  • Intraocular Pressure*
  • Mice
  • Optic Nerve Diseases* / etiology
  • Optic Nerve Diseases* / metabolism
  • Optic Nerve Diseases* / pathology
  • Retinal Ganglion Cells / pathology*