Threefold Increase of the Bulk Electron Temperature of Plasma Discharges in a Magnetic Mirror Device

Phys Rev Lett. 2015 May 22;114(20):205001. doi: 10.1103/PhysRevLett.114.205001. Epub 2015 May 18.

Abstract

This Letter describes plasma discharges with a high temperature of bulk electrons in the axially symmetric high-mirror-ratio (R=35) open magnetic system gas dynamic trap (GDT) in the Budker Institute (Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over a number of sequential shots is 660±50 eV with the plasma density being 0.7×10^{19} m^{-3}; in few shots, electron temperature exceeds 900 eV. This corresponds to at least a threefold increase with respect to previous experiments both at GDT and at other comparable machines, thus, demonstrating the highest quasistationary (about 1 ms) electron temperature achieved in open traps. The breakthrough is made possible by application of a new 0.7 MW/54.5 GHz electron cyclotron resonance heating system in addition to standard 5 MW heating by neutral beams, and application of a radial electric field to mitigate the flute instability.