Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies

PLoS One. 2015 Jun 3;10(6):e0127648. doi: 10.1371/journal.pone.0127648. eCollection 2015.

Abstract

Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Calcium Carbonate / chemistry*
  • Carbon Dioxide / chemistry*
  • Coral Reefs*
  • Hot Temperature*
  • Hydrogen-Ion Concentration
  • Time Factors

Substances

  • Carbon Dioxide
  • Calcium Carbonate

Grants and funding

This research was funded by the Australian Research Council (ARC) Linkage Infrastructure Equipment and Facilities grant #LE0989608 (OHG, DK, SD), ARC Linkage grant #LP0775303 (OHG, SD), ARC Centre of Excellence grant #CE0561435 (OHG, SD), a Queensland Government Smart State Premier's Fellowship to OHG, National Science Foundation grants (NSF OCE-0729236, to RBD; and NSF ATM-0941760 to BGM), and the Pacific Blue Foundation (DK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.