Residual force depression in single sarcomeres is abolished by MgADP-induced activation

Sci Rep. 2015 Jun 3:5:10555. doi: 10.1038/srep10555.

Abstract

The mechanisms behind the shortening-induced force depression commonly observed in skeletal muscles remain unclear, but have been associated with sarcomere length non-uniformity and/or crossbridge inhibition. The purpose of this study was twofold: (i) to evaluate if force depression is present in isolated single sarcomeres, a preparation that eliminates sarcomere length non-uniformities and (ii) to evaluate if force depression is inhibited when single sarcomeres are activated with MgADP, which biases crossbridges into a strongly-bound state. Single sarcomeres (n = 16) were isolated from rabbit psoas myofibrils using two micro-needles (one compliant, one rigid), piercing the sarcomere externally adjacent to the Z-lines. The sarcomeres were contracted isometrically and subsequently shortened, in both Ca(2+)- and MgADP-activating solutions. Shortening in Ca(2+)-activated samples resulted in a 27.44 ± 9.04% force depression when compared to isometric contractions produced at similar final sarcomere lengths (P < 0.001). There was no force depression in MgADP-activated sarcomeres (force depression = -1.79 ± 9.69%, P = 0.435). These results suggest that force depression is a sarcomeric property, and that is associated with an inhibition of myosin-actin interactions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Diphosphate / metabolism*
  • Adenosine Diphosphate / pharmacology
  • Animals
  • Calcium / metabolism
  • Muscle Contraction / physiology
  • Muscle, Skeletal / drug effects
  • Muscle, Skeletal / physiology*
  • Rabbits
  • Sarcomeres / drug effects
  • Sarcomeres / physiology*

Substances

  • Adenosine Diphosphate
  • Calcium