Activation of Histidine Kinase SpaK Is Mediated by the N-Terminal Portion of Subtilin-Like Lantibiotics and Is Independent of Lipid II

Appl Environ Microbiol. 2015 Aug 15;81(16):5335-43. doi: 10.1128/AEM.01368-15. Epub 2015 May 29.

Abstract

The biosynthesis of the lantibiotic subtilin is autoinduced in a quorum-sensing mechanism via histidine kinase SpaK. Subtilin-like lantibiotics, such as entianin, ericin S, and subtilin, specifically activated SpaK in a comparable manner, whereas the structurally similar nisin did not provide the signal for SpaK activation at nontoxic concentrations. Surprisingly, nevertheless, nisin if applied together with entianin partly quenched SpaK activation. The N-terminal entianin1-20 fragment (comprising N-terminal amino acids 1 to 20) was sufficient for SpaK activation, although higher concentrations were needed. The N-terminal nisin1-20 fragment also interfered with entianin-mediated activation of SpaK and, remarkably, at extremely high concentrations also activated SpaK. Our data show that the N-terminal entianin1-20 fragment is sufficient for SpaK activation. However, if present, the C-terminal part of the molecule further strongly enhances the activation, possibly by its interference with the cellular membrane. As shown by using lipid II-interfering substances and a lipid II-deficient mutant strain, lipid II is not needed for the sensing mechanism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus subtilis / enzymology*
  • Bacillus subtilis / metabolism*
  • Bacteriocins / metabolism*
  • Enzyme Activation
  • Histidine Kinase
  • Nisin / metabolism
  • Protein Kinases / metabolism*
  • Uridine Diphosphate N-Acetylmuramic Acid / analogs & derivatives*
  • Uridine Diphosphate N-Acetylmuramic Acid / metabolism

Substances

  • Bacteriocins
  • Uridine Diphosphate N-Acetylmuramic Acid
  • muramyl-NAc-(pentapeptide)pyrophosphoryl-undecaprenol
  • Nisin
  • Protein Kinases
  • Histidine Kinase
  • subtilin