Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation

Biofabrication. 2015 May 28;7(2):025009. doi: 10.1088/1758-5090/7/2/025009.

Abstract

In clinical islet transplantation, allogeneic islets of Langerhans are transplanted into the portal vein of patients with type 1 diabetes, enabling the restoration of normoglycemia. After intra-hepatic transplantation several factors are involved in the decay in islet mass and function mainly caused by an immediate blood mediated inflammatory response, lack of vascularization, and allo- and autoimmunity. Bioengineered scaffolds can potentially provide an alternative extra-hepatic transplantation site for islets by improving nutrient diffusion and blood supply to the scaffold. This would ultimately result in enhanced islet viability and functionality compared to conventional intra portal transplantation. In this regard, the biomaterial choice, the three-dimensional (3D) shape and scaffold porosity are key parameters for an optimal construct design and, ultimately, transplantation outcome. We used 3D bioplotting for the fabrication of a 3D alginate-based porous scaffold as an extra-hepatic islet delivery system. In 3D-plotted alginate scaffolds the surface to volume ratio, and thus oxygen and nutrient transport, is increased compared to conventional bulk hydrogels. Several alginate mixtures have been tested for INS1E β-cell viability. Alginate/gelatin mixtures resulted in high plotting performances, and satisfactory handling properties. INS1E β-cells, human and mouse islets were successfully embedded in 3D-plotted constructs without affecting their morphology and viability, while preventing their aggregation. 3D plotted scaffolds could help in creating an alternative extra-hepatic transplantation site. In contrast to microcapsule embedding, in 3D plotted scaffold islets are confined in one location and blood vessels can grow into the pores of the construct, in closer contact to the embedded tissue. Once revascularization has occurred, the functionality is fully restored upon degradation of the scaffold.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alginates / chemistry
  • Animals
  • Capsules / chemistry
  • Cell Survival / drug effects
  • Cells, Cultured
  • Gelatin / chemistry
  • Glucose / metabolism
  • Glucose / pharmacology
  • Glucuronic Acid / chemistry
  • Hexuronic Acids / chemistry
  • Humans
  • Hydrogel, Polyethylene Glycol Dimethacrylate / chemistry*
  • Hydrogel, Polyethylene Glycol Dimethacrylate / toxicity
  • Insulin / metabolism
  • Insulin Secretion
  • Islets of Langerhans / cytology
  • Islets of Langerhans / drug effects
  • Islets of Langerhans / metabolism
  • Islets of Langerhans Transplantation*
  • Mice
  • Mice, Transgenic
  • Microscopy, Fluorescence
  • Porosity
  • Rats
  • Tissue Scaffolds*

Substances

  • Alginates
  • Capsules
  • Hexuronic Acids
  • Insulin
  • Hydrogel, Polyethylene Glycol Dimethacrylate
  • Glucuronic Acid
  • Gelatin
  • Glucose