Influence of the Synthetic Conditions on the Structural and Electrochemical Properties of Carbon Nano-Onions

Chemphyschem. 2015 Jul 20;16(10):2182-91. doi: 10.1002/cphc.201500061. Epub 2015 May 28.

Abstract

Thermal annealing of nanodiamonds with diameters of a few nanometers (in an inert atmosphere and at temperatures in the range: 1500-1800 °C) leads to the formation of carbon nano-onions (CNOs) with diameters between 5 and 6 nm, which correspond to nanostructures with six to eight graphitic layers. The resulting spherical CNO structures were thermally modified under different atmospheres and characterized by SEM, TEM, thermogravimetric analysis and spectroscopic (Raman and diffuse reflectance infrared Fourier transform/FTIR) spectroscopy. The electrochemical properties of the CNOs prepared under different conditions were determined and compared. The results reveal that the CNOs show different structures with predominant spherical "small" carbon nano-onions. The aim of this article is to investigate the impact of the CNO's synthesis conditions on the resulting structures and study the effect of further thermal modifications on the sizes, shapes and homogeneity of these carbon nanostructures.

Keywords: capacitance; carbon nano-onions; electrochemistry; spectroscopy; structure.