Secondary anchor targeted cell release

Biotechnol Bioeng. 2015 Nov;112(11):2214-27. doi: 10.1002/bit.25648. Epub 2015 Sep 23.

Abstract

Personalized medicine offers the promise of tailoring therapy to patients, based on their cellular biomarkers. To achieve this goal, cellular profiling systems are needed that can quickly and efficiently isolate specific cell types without disrupting cellular biomarkers. Here we describe the development of a unique platform that facilitates gentle cell capture via a secondary, surface-anchoring moiety, and cell release. The cellular capture system consists of a glass surface functionalized with APTES, d-desthiobiotin, and streptavidin. Biotinylated mCD11b and hIgG antibodies are used to capture mouse macrophages (RAW 264.7) and human breast cancer (MCF7-GFP) cell lines, respectively. The surface functionalization is optimized by altering assay components, such as streptavidin, d-desthiobiotin, and APTES, to achieve cell capture on 80% of the functionalized surface and cell release upon biotin treatment. We also demonstrate an ability to capture 50% of target cells within a dual-cell mixture. This engineering advancement is a critical step towards achieving cell isolation platforms for personalized medicine.

Keywords: APTES; cell isolation; desthiobiotin; glass functionalization; personalized medicine; streptavidin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biotin / analogs & derivatives
  • CD11b Antigen / metabolism
  • Cell Line
  • Cell Separation / methods*
  • Glass
  • Humans
  • Immunoglobulin G / metabolism
  • Mice
  • Propylamines
  • Silanes
  • Streptavidin

Substances

  • CD11b Antigen
  • Immunoglobulin G
  • Propylamines
  • Silanes
  • Biotin
  • desthiobiotin
  • Streptavidin
  • amino-propyl-triethoxysilane