Cytoplasmic dynein and early endosome transport

Cell Mol Life Sci. 2015 Sep;72(17):3267-80. doi: 10.1007/s00018-015-1926-y. Epub 2015 May 23.

Abstract

Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early endosome movements towards the microtubule minus ends. The physical interaction between dynein and early endosome requires the dynactin complex, and in particular, its p25 component. The FTS-Hook-FHIP (FHF) complex links dynein-dynactin to early endosomes, and within the FHF complex, Hook interacts with dynein-dynactin, and Hook-early endosome interaction depends on FHIP and FTS.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Biological Transport / physiology
  • Cytoplasm / metabolism*
  • Dyneins / genetics
  • Dyneins / metabolism*
  • Endosomes / metabolism*
  • Fungi / metabolism*
  • Microtubules / metabolism
  • Microtubules / physiology*
  • Models, Biological*

Substances

  • Dyneins