Simultaneous Improvement of Hole and Electron Injection in Organic Field-effect Transistors by Conjugated Polymer-wrapped Carbon Nanotube Interlayers

Sci Rep. 2015 May 22:5:10407. doi: 10.1038/srep10407.

Abstract

Efficient charge injection is critical for flexible organic electronic devices such as organic light-emitting diodes (OLEDs) and field-effect transistors (OFETs). Here, we investigated conjugated polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) as solution-processable charge-injection layers in ambipolar organic field-effect transistors with poly(thienylenevinylene-co-phthalimide)s. The interlayers were prepared using poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) or poly(9,9-dioctylfluorene) (PFO) to wrap s-SWNTs. In the contact-limited ambipolar OFETs, the interlayer led to significantly lower contact resistance (Rc) and increased mobilities for both holes and electrons. The resulting PTVPhI-Eh OFETs with PFO-wrapped s-SWNT interlayers showed very well-balanced ambipolar transport properties with a hole mobility of 0.5 cm(2)V(-1)S(-1) and an electron mobility of 0.5 cm(2)V(-1)S(-1) in linear regime. In addition, the chirality of s-SWNTs and kind of wrapping of conjugated polymers are not critical to improving charge-injection properties. We found that the improvements caused by the interlayer were due to the better charge injection at the metal/organic semiconductor contact interface and the increase in the charge concentration through a detailed examination of charge transport with low-temperature measurements. Finally, we successfully demonstrated complementary ambipolar inverters incorporating the interlayers without excessive patterning.

Publication types

  • Research Support, Non-U.S. Gov't