Fabrication and electrical characterization of graphene formed chemically on nickel nano electro mechanical system (NEMS) switch

J Nanosci Nanotechnol. 2014 Dec;14(12):9418-24. doi: 10.1166/jnn.2014.10148.

Abstract

In this work, we successfully fabricated a reliable nano-electro-mechanical system (NEMS) switch with graphene formed chemically on pre-patterned nickel (Ni) film movable beam. Its electrical characteristics were investigated in terms of current-voltage (I-V) and repetitive switching (on/off) properties. The graphene in the movable beam was selectively formed chemically only on the patterned Ni film. Graphene material may help overcome the stiction and reliability problems in nano-electro-mechanical devices. A study on graphene cantilever already has been reported by using only single or multi-layer of transferred graphene. However, the graphene selectively grown on Ni film has not been reported for NEMS switch. The graphene grown on Ni film by chemical vapor deposition method (CVD) were characterized by Raman spectroscopy. The fabricated lateral NEMS switch has w/l/t = 500 nm/20 μm/150 nm as a Ni dimension and an air-gap of -300 nm in lateral direction. The fabricated graphene movable beam formed chemically on Ni film shows reduced pull-in voltage and improved endurance (extended repetitive switching operations).

Publication types

  • Research Support, Non-U.S. Gov't