Increased photovoltaic performance by the optimized TiClI4 and AlCl3 surface treatment in dye-sensitized solar cells

J Nanosci Nanotechnol. 2014 Dec;14(12):9247-52. doi: 10.1166/jnn.2014.10115.

Abstract

The surface of TiO2 photoelectrodes coated on F-doped SnO2 (FTO) was modified by soaking it in a TiCl4:AlCl3 mixed aqueous solution with various molar ratios, and then calcining to produce the TiCl4:AlCl3-treated TiO2 photoelectrode (Ti:Al-TiO2/FTO). The highest power conversion efficiency (PCE) was obtained from dye-sensitized solar cells (DSSC) with Ti:Al(5:5)-TiO2/FTO, which was prepared from the mixed solution with the molar ratio of 5:5 (TiCi4:AlCl3). PCE of DSSC with Ti:Al (5:5)-TiO2/FTO was improved by ca. 19.6%, compared to that of the reference device with Ti:Al (10:0)-TiO2/FTO (i.e., TiO2-coated TiO2/FTO) due to an enhancement in both short-circuit photocurrent (J(sc)) and open-circuit voltage (V(oc)). A series of measurements such as UV-visible absorption, electrochemical impedance, open circuit voltage decay and dark current revealed that the increase in J(sc) was attributed to the improvement of electron collection efficiency by a prolonged electron lifetime, and the suppression of the charge recombination between injected electrons and I3(-) ions was found to increase the V(oc) value of the device with Ti:Al(5:5)-TiO2/FTO.

Publication types

  • Research Support, Non-U.S. Gov't