TiO2 particles on a 3D network of single-walled nanotubes for NH3 gas sensors

J Nanosci Nanotechnol. 2014 Dec;14(12):9148-51. doi: 10.1166/jnn.2014.10092.

Abstract

Ammonia (NH3) gas is one of the gases which causes damage to environment such as acidification and climate change. In this study, a gas sensor based on the three-dimensional (3D) network of single-walled nanotubes (SWNTs) was fabricated for the detection of NH3 gas in dry air. The sensor showed enhanced performance due to the fast gas diffusion rate and weak interactions between the carbon nanotubes and the substrate. Metal oxide particles were introduced to enhance the performance of the gas sensor. Atomic layer deposition (ALD) was employed to deposit the metal oxide in the complex structure, and good control over thickness was achieved. The hybrid gas sensor consisting of the 3D network of SWNTs with anatase TiO2 particles showed stable, repeatable, and enhanced gas sensor performance. The phase of TiO2 particles was characterized by Raman and the morphology of the TiO2 particles on the 3D network of SWNTs was analyzed by transmission electron microscope.

Publication types

  • Research Support, Non-U.S. Gov't