Faces of Platonic solids in all dimensions

Acta Crystallogr A Found Adv. 2014 Jul;70(Pt 4):358-63. doi: 10.1107/S205327331400638X. Epub 2014 Jun 11.

Abstract

This paper considers Platonic solids/polytopes in the real Euclidean space R(n) of dimension 3 ≤ n < ∞. The Platonic solids/polytopes are described together with their faces of dimensions 0 ≤ d ≤ n - 1. Dual pairs of Platonic polytopes are considered in parallel. The underlying finite Coxeter groups are those of simple Lie algebras of types A(n), B(n), C(n), F4, also called the Weyl groups or, equivalently, crystallographic Coxeter groups, and of non-crystallographic Coxeter groups H3, H4. The method consists of recursively decorating the appropriate Coxeter-Dynkin diagram. Each recursion step provides the essential information about faces of a specific dimension. If, at each recursion step, all of the faces are in the same Coxeter group orbit, i.e. are identical, the solid is called Platonic. The main result of the paper is found in Theorem 2.1 and Propositions 3.1 and 3.2.

Keywords: Coxeter group; Coxeter–Dynkin diagram; Lie algebras; Lie groups; Platonic solids.