GaSb-based mid infrared photonic crystal surface emitting lasers

Opt Express. 2015 May 4;23(9):11741-7. doi: 10.1364/OE.23.011741.

Abstract

We demonstrated for the first time above room temperature (RT) GaSb-based mid-infrared photonic crystal surface emitting lasers (PCSELs). The lasers, under optical pumping, emitted at λ(lasing)~2.3μm, had a temperature insensitive line width of 0.3nm, and a threshold power density (P(th)) ~0.3KW/cm2 at RT. Type-I InGaAsSb quantum wells were used as the active region, and the photonic crystal, a square lattice, was fabricated on the surface to provide optical feedback for laser operation and light coupling for surface emission. The PCSELs were operated at temperatures up to 350K with a small wavelength shift rate of 0.21 nm/K. The PCSELs with different air hole depth were studied. The effect of the etched depth on the laser performance was also investigated using numerical simulation based on the coupled-wave theory. Both the laser wavelength and the threshold power decrease as the depth of the PC becomes larger. The calculated results agree well with the experimental findings.