Broadband light trapping based on periodically textured ZnO thin films

Nanoscale. 2015 Jun 7;7(21):9816-24. doi: 10.1039/c5nr01528f.

Abstract

Transparent conductive front electrodes (TCFEs) deployed in photovoltaic devices have been extensively studied for their significance in transporting carriers, coupling and trapping the incident photons in high-performing solar cells. The trade-off between the light-transmission, electrical, and scattering properties for TCFEs to achieve a broadband improvement in light absorption in solar cells while maintaining a high electrical performance has become the key issue to be tackled. In this paper, we employ self-assembled polystyrene (PS) spheres based on a sauna-like method as a template, followed by a double-layer deposition and then successfully fabricate highly-transparent, well-conductive, and large-scale periodically-textured ZnO TCFEs with broadband light trapping properties. A sheet resistance below 15 Ω sq(-1) was achieved for the periodically-textured ZnO TCFEs, with a concomitant average transmission of 81% (including the glass substrate) in the 400-1100 nm spectral range, a haze improvement in a broadband spectral range, and a wider scattering angular domain. The proposed approach affords a promising alternative method to prepare periodically-textured TCFEs, which are essential for many optoelectronic device semiconductors, such as photovoltaic and display applications.

Publication types

  • Research Support, Non-U.S. Gov't