High temperature carbon dioxide capture on nano-structured MgO-Al2O3 and CaO-Al2O3 adsorbents: an experimental and theoretical study

J Nanosci Nanotechnol. 2014 Nov;14(11):8531-8. doi: 10.1166/jnn.2014.9954.

Abstract

Nano-structured alkaline-earth metal oxide adsorbents (denoted as MgO-Al2O3 and CaO-Al2O3) were prepared by an epoxide-driven one-pot sol-gel method, and they were applied to the dynamic and static CO2 adsorption. For comparison, a nano-structured aluminum oxide adsorbent (denoted as Al2O3) was also prepared by a similar method. MgO-Al2O3 adsorbent exhibited a well-developed mesopore structure through the formation of MgAl2O4 spinel phase, whereas CaO-Al2O3 adsorbent was composed of nano-sized CaO and CaAl2O4, resulting in a pore plugging. It was revealed that total basicity increased in the order of Al2O3 (0.11 mmol-CO2/g) < MgO-Al2O3 (0.37 mmol-CO2/g) < CaO-Al2O3, (1.21 mmol-CO2/g), which is in concurrent with adsorption energy obtained from DFT calculations. However, it was found that both basicity and base strength of the adsorbents played an important role in determining the CO2 adsorptive performance at different operating temperature. Among the adsorbents tested, MgO-Al2O3, which mostly retained medium basic sites, exhibited a best CO2 adsorptive performance at 200 degrees C. Furthermore, the experimental results are well supported by theoretical estimation, suggesting a useful design method of adsorbents for facile and regenerative adsorption in the applications of CO2 capture.

Publication types

  • Research Support, Non-U.S. Gov't