[Effect of degradation succession process on the temperature sensitivity of ecosystem respiration in alpine Potentilla fruticosa scrub meadow]

Huan Jing Ke Xue. 2015 Mar;36(3):1075-83.
[Article in Chinese]

Abstract

Grazing is one of the main artificial driving forces for the degradation succession process of alpine meadow. In order to quantitatively study the temperature sensitivity of alpine meadow ecosystem respiration in different degradation stages, we conducted the research in Haibei Alpine Meadow Ecosystem Research Station, CAS from July 2003 to July 2004. The static chamber-chromatography methodology was used to observe the seasonal changes of alpine scrub ecosystem respiration flux during different degradation stages. The results showed that: (1) The seasonal changes of ecosystem respiration flux in different degradation stages of alpine shrub presented a unimodal curve. The maximum appeared in August and the minimum appeared during the period from October to next April. The degradation succession process significantly decreased the ecosystem respiratory CO2 release rate. The respiratory rate ranges of alpine Potentilla fruticosa scrub (GG), Kobresia capillifolia meadow (GC) and bare land (GL) were 34.21-1 168.23, 2.30-1 112.38 and 20.40-509.72 mg (m2 x h)(-1), respectively. The average respiration rate of GG was 1.29 and 2.56 times of that of GC and GL, respectively; (2) Temperature was the main factor that affected the ecosystem respiration rate, and contributed 25% - 79% of the variation of the ecosystem respiration. The degradation succession process significantly changed the correlation between ecosystem respiration rate and temperature. The correlation (R2) between ecosystem respiration rate and each temperature indicator (T(s), T(d) and T(a)) was reduced by 47.23%, 46.95% and 55.28%, respectively when the ground vegetation disappeared and the scrub was degraded into secondary bare land; (3) The difference of Q10 between warm and cool seasons was significant (P < 0.05), and the value of cold season was larger than that of warm season. Degradation succession process apparently changed the temperature sensitivity of ecosystem respiration. The Q10 values of GG, GC and GL were 2.38, 2.91 and 1.62, respectively. Q10 of GC was increased by 22.26% and that of GL was decreased by 31.93% compared with that of GG.

MeSH terms

  • China
  • Grassland*
  • Potentilla*
  • Seasons
  • Soil / chemistry*
  • Temperature*

Substances

  • Soil