An organic approach for nanostructured multiferroics

Nanoscale. 2015 May 28;7(20):9122-32. doi: 10.1039/c5nr01435b.

Abstract

Multiferroics are materials that simultaneously exhibit more than one ferroic order parameters, such as ferroelectricity, ferroelasticity and ferromagnetism. Recently, multiferroicity has received a significant revival of interest due to the colossal magnetoelectric coupling effect for the development of nano-ferronics. In this mini-review, we focus on a recent study of ferroelectricity, magnetism and magnetoelectric coupling within the newly discovered organic charge-transfer complexes. A systemic understanding of the origin of organic ferroelectricity and magnetism is provided. Furthermore, based on the recent mechanism of the magnetoelectric coupling effect: spin-ordering-induced electric polarization and ferroelectricity-induced spin alignment, we further present the recent progress in organic charge-transfer multiferroics and metal-organic framework multiferroics. The coexistence of polarization and magnetism at room temperature of organic charge-transfer complexes will be critical for the development of all-organic multiferroics.

Publication types

  • Research Support, Non-U.S. Gov't