Molecular stacking character and charge transport properties of tetrabenzoheptacenes derivatives: the effects of nitrogen doping and phenyl substitution

J Mol Model. 2015 May;21(5):126. doi: 10.1007/s00894-015-2677-2. Epub 2015 Apr 25.

Abstract

The nitrogen doping and phenyl substitution effects on the geometries, molecular stacking character, electronic, and charge transport properties of tetrabenzoheptacene (TTBH) have been investigated by means of density functional theory (DFT) calculation and incoherent charge hopping model. Our results indicate that the nitrogen doping (TTH) at the 6,8,15,17 positions improves its stability in air and the ability of electron injection and in the meantime slightly changes the molecular stacking due to the C-H···N interaction. For both TTBH and TTH, large hole transport mobility (μh) and electron transport mobility (μe), which are on the same order of magnitude, are given rise by their dense displaced π-stacking in crystal. Comparatively, the phenyl substitution (Ph-TTBH) at the 6,8,15,17 positions adopts a non-planar conformation, adverse to close packing and therefore leads to smaller electron/hole transport mobility (μ) than those of TTBH and TTH. The calculations suggest TTBH and TTH are promising candidates for excellent ambipolar OFET materials.

Publication types

  • Research Support, Non-U.S. Gov't