All-solution-processed PbS quantum dot solar modules

Nanoscale. 2015 May 21;7(19):8829-34. doi: 10.1039/c5nr01508a.

Abstract

A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm(2), exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm(2) unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.

Publication types

  • Research Support, Non-U.S. Gov't