Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis

PLoS One. 2015 Apr 23;10(4):e0123023. doi: 10.1371/journal.pone.0123023. eCollection 2015.

Abstract

Community assembly theory is founded on the premise that the relative importance of local environmental processes and dispersal shapes the compositional structure of metacommunities. The species sorting model predicts that assemblages are dominated by the environmental filtering of species that are readily able to disperse to suitable sites. We propose an ecophysiological hypothesis (EH) for the mechanism underlying the organization of species-sorting odonate metacommunities based on the interplay of thermoregulation, body size and the degree of sunlight availability in small-to-medium tropical streams. Due to thermoregulatory restrictions, the EH predicts (i) that larger species are disfavored in small streams and (ii) that streams exhibit a nested compositional pattern characterized by species' size distribution. To test the EH, we evaluate the longitudinal distribution of adult Odonata at 19 sites in 1st- to 6th-order streams in the Tropical Cerrado of Brazil. With increasing channel width, the total abundance and species richness of Anisoptera increased, while the abundance of Zygoptera decreased. The first axis of an ordination analysis of the species abundance data was directly related to channel width. Mean and maximum thorax size are positively correlated to channel width, but no relationship was found for the minimum thorax size, suggesting that there is no lower size constraint on the occurrence of these species. Additionally, a nested compositional pattern related to body size was observed. Our results support the EH and its use as an ecological assembly rule based on abiotic factors. Forest cover functions as a filter to determine which species successfully colonize a given site within a metacommunity. As a consequence, the EH also indicates higher treats for small-bodied zygopterans in relation to the loss of riparian forests in tropical streams.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biodiversity
  • Odonata / physiology*
  • Tropical Climate*

Grants and funding

This research was funded by UNEMAT/FAPEMAT/FIDPEX. J. D. Batista was funded by CAPES and P. De Marco by continuous productivity CNPq grants (305542/2010-9). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.