Transcript profiling of jasmonate-elicited Taxus cells reveals a β-phenylalanine-CoA ligase

Plant Biotechnol J. 2016 Jan;14(1):85-96. doi: 10.1111/pbi.12359. Epub 2015 Apr 21.

Abstract

Plant cell cultures constitute eco-friendly biotechnological platforms for the production of plant secondary metabolites with pharmacological activities, as well as a suitable system for extending our knowledge of secondary metabolism. Despite the high added value of taxol and the importance of taxanes as anticancer compounds, several aspects of their biosynthesis remain unknown. In this work, a genomewide expression analysis of jasmonate-elicited Taxus baccata cell cultures by complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) indicated a correlation between an extensive elicitor-induced genetic reprogramming and increased taxane production in the targeted cultures. Subsequent in silico analysis allowed us to identify 15 genes with a jasmonate-induced differential expression as putative candidates for genes encoding enzymes involved in five unknown steps of taxane biosynthesis. Among them, the TB768 gene showed a strong homology, including a very similar predicted 3D structure, with other genes previously reported to encode acyl-CoA ligases, thus suggesting a role in the formation of the taxol lateral chain. Functional analysis confirmed that the TB768 gene encodes an acyl-CoA ligase that localizes to the cytoplasm and is able to convert β-phenylalanine, as well as coumaric acid, into their respective derivative CoA esters. β-phenylalanyl-CoA is attached to baccatin III in one of the last steps of the taxol biosynthetic pathway. The identification of this gene will contribute to the establishment of sustainable taxol production systems through metabolic engineering or synthetic biology approaches.

Keywords: CoA ligase; Taxol; Taxus baccata; cDNA-AFLP; cell cultures; methyl jasmonate; β-phenylalanine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amplified Fragment Length Polymorphism Analysis
  • Bridged-Ring Compounds / chemistry
  • Chromatography, High Pressure Liquid
  • Computer Simulation
  • Cyclopentanes / pharmacology*
  • Cytosol / enzymology
  • DNA, Complementary / genetics
  • Gene Expression Profiling*
  • Gene Expression Regulation, Plant / drug effects*
  • Genes, Plant
  • Genetic Association Studies
  • Ligases / chemistry
  • Ligases / genetics*
  • Ligases / metabolism
  • Models, Molecular
  • Oxylipins / pharmacology*
  • Paclitaxel / biosynthesis
  • Paclitaxel / chemistry
  • Phenylalanine / metabolism*
  • Plant Proteins / chemistry
  • Plant Proteins / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Sequence Alignment
  • Tandem Mass Spectrometry
  • Taxoids / chemistry
  • Taxus / cytology*
  • Taxus / drug effects
  • Taxus / enzymology*
  • Taxus / genetics

Substances

  • Bridged-Ring Compounds
  • Cyclopentanes
  • DNA, Complementary
  • Oxylipins
  • Plant Proteins
  • RNA, Messenger
  • Taxoids
  • taxane
  • Phenylalanine
  • jasmonic acid
  • Ligases
  • Paclitaxel

Associated data

  • GENBANK/KM593667
  • GENBANK/KP178200
  • GENBANK/KP178201
  • GENBANK/KP178202
  • GENBANK/KP178203
  • GENBANK/KP178204
  • GENBANK/KP178205
  • GENBANK/KP178206
  • GENBANK/KP178207
  • GENBANK/KP178208
  • GENBANK/KP178209
  • GENBANK/KP178210
  • GENBANK/KP178211
  • GENBANK/KP178212
  • GENBANK/KP178213