[Ultraviolet-visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter (DOM) in soils of water-level fluctuation zones of the Three Gorges Reservoir Region]

Huan Jing Ke Xue. 2015 Jan;36(1):151-62.
[Article in Chinese]

Abstract

Ultraviolet-visible (UV-Vis) absorption spectroscopy and three-dimensional fluorescence spectroscopy, combined with fluorescence regional integration were conducted to investigate the geochemical characteristics of DOM extracted from soils of water-level fluctuation zones of the Three Gorges Reservoir Region. The results showed that the average CDOM concentrations in soils were in order of Zhongxian > Fengdu > Fuling > Wanzhou > Wushan > Yunyang > Fengjie > Kaixian. Additionally, in Zhongxian, Fengdu and Fuling, the CDOM concentration [a (355)], aromaticity (SUVA254) and hydrophobicity (SUVA260) were all much higher than those at the other sampling sites, but the humification index (HIX) was lower. Four fluorophores were observed in all soil DOM samples, including three humic-like fluorescence peaks (A, C and M respectively) and one tryptophan-like fluorescence peak (T). Proportion of fluorescence regional integration of ultraviolet region humic-like A fluorophore was the highest as compared with the others. More importantly, tryptophan-like fluorophore (T) and a(355) showed significant correlation (r = 0.674, P < 0.01), indicating the variance of CDOM concentration was possibly dependent on T fluorophore. Meanwhile, the total integrated fluorescence intensity(TOT) of 3D- EEM was an appropriate parameter to characterize the total contributions of fluorophores in DOM. Furthermore, the humification degree of DOM in soils was low in comparison with higher biological availability. Conclusively it seemed that the influence of "alternation of wetting and drying" resulted from water-level fluctuation on the geochemical characteristics of soil DOM was not significant as expected. It might be related to local agricultural activity, littoral plant growth and DOM mineralization process.

MeSH terms

  • China
  • Fresh Water / chemistry*
  • Hydrophobic and Hydrophilic Interactions
  • Organic Chemicals / analysis*
  • Soil / chemistry*
  • Spectrometry, Fluorescence

Substances

  • Organic Chemicals
  • Soil