[Remote sensing estimation of total suspended matter concentration in Xin'anjiang Reservoir using Landsat 8 data]

Huan Jing Ke Xue. 2015 Jan;36(1):56-63.
[Article in Chinese]

Abstract

Total suspended matter (TSM) plays an important role in determining the underwater light climate, which then affects the lake primary production. Therefore, TSM concentration is an important parameter for lake water quality and water environment assessment. This study developed an empirical estimation model and presented the spatial distribution of TSM concentration for the relatively clear Xin'anjiang Reservoir based on the in situ ground data and the matching Landsat 8 data. The results showed that Band 2, Band 3 and Band 8 of Landsat 8 data were the sensitive bands of TSM estimation in Xin'anjiang Reservoir with the linear determination coefficients of 0.37, 0.51 and 0.42, respectively. However, the linear models using Band 2, Band 3 and Band 8 could not give a reasonable and satisfying estimation accuracy. Therefore, a three-band combination estimation model of TSM concentration using Band 2, Band 3 and Band. 8 was calibrated and validated to improve the TSM concentration estimation accuracy. The determination coefficient, mean relative error and root mean square error were 0.92, 11% and 0.16 mg x L(-1), respectively for the three-band combination model. Overall, the TSM concentration was relatively low in Xin'anjiang Reservoir, ranging from 0. 04 to 24. 54 mg x L(-1) with a mean value of 2.19 mg x L(-1). Higher TSM concentrations were distributed in the nearshore zones and small bays such as Fengshuling bay, Fenkou bay, Weiping bay, Anyang bay, Dashu bay and Linqi bay, which were affected by input rivers rainfall and human dredging activity. Therefore, this study demonstrated that the combination of three bands using Landsat 8 data could be used to estimate the TSM concentration in the relatively clear Xin'anjiang Reservoir.

MeSH terms

  • Bays
  • China
  • Environmental Monitoring*
  • Fresh Water / analysis*
  • Lakes
  • Light
  • Models, Theoretical
  • Satellite Imagery*