Differential assemblage of functional units in paddy soil microbiomes

PLoS One. 2015 Apr 21;10(4):e0122221. doi: 10.1371/journal.pone.0122221. eCollection 2015.

Abstract

Flooded rice fields are not only a global food source but also a major biogenic source of atmospheric methane. Using metatranscriptomics, we comparatively explored structural and functional succession of paddy soil microbiomes in the oxic surface layer and anoxic bulk soil. Cyanobacteria, Fungi, Xanthomonadales, Myxococcales, and Methylococcales were the most abundant and metabolically active groups in the oxic zone, while Clostridia, Actinobacteria, Geobacter, Anaeromyxobacter, Anaerolineae, and methanogenic archaea dominated the anoxic zone. The protein synthesis potential of these groups was about 75% and 50% of the entire community capacity, respectively. Their structure-function relationships in microbiome succession were revealed by classifying the protein-coding transcripts into core, non-core, and taxon-specific transcripts based on homologous gene distribution. The differential expression of core transcripts between the two microbiomes indicated that structural succession is primarily governed by the cellular ability to adapt to the given oxygen condition, involving oxidative stress, nitrogen/phosphorus metabolism, and fermentation. By contrast, the non-core transcripts were expressed from genes involved in the metabolism of various carbon sources. Among those, taxon-specific transcripts revealed highly specialized roles of the dominant groups in community-wide functioning. For instance, taxon-specific transcripts involved in photosynthesis and methane oxidation were a characteristic of the oxic zone, while those related to methane production and aromatic compound degradation were specific to the anoxic zone. Degradation of organic matters, antibiotics resistance, and secondary metabolite production were detected to be expressed in both the oxic and anoxic zones, but by different taxonomic groups. Cross-feeding of methanol between members of the Methylococcales and Xanthomonadales was suggested by the observation that in the oxic zone, they both exclusively expressed homologous genes encoding methanol dehydrogenase. Our metatranscriptomic analysis suggests that paddy soil microbiomes act as complex, functionally coordinated assemblages whose taxonomic composition is governed by the prevailing habitat factors and their hierarchical importance for community succession.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaerobiosis
  • Crenarchaeota / genetics
  • Crops, Agricultural
  • Methylococcaceae / genetics
  • Microbiota / genetics
  • Myxococcales / genetics
  • Oryza
  • RNA, Archaeal / genetics
  • RNA, Bacterial / genetics
  • RNA, Messenger / genetics
  • RNA, Ribosomal / genetics
  • Ribosome Subunits, Small, Archaeal / genetics
  • Ribosome Subunits, Small, Bacterial / genetics
  • Soil Microbiology*
  • Transcriptome

Substances

  • RNA, Archaeal
  • RNA, Bacterial
  • RNA, Messenger
  • RNA, Ribosomal

Associated data

  • SRA/PRJNA215834

Grants and funding

This research was funded by the Deutsche Forschungsgemeinschaft (collaborative research center SFB 987). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.