Structure and function of the mitochondrial calcium uniporter complex

Biochim Biophys Acta. 2015 Sep;1853(9):2006-11. doi: 10.1016/j.bbamcr.2015.04.008. Epub 2015 Apr 18.

Abstract

The mitochondrial calcium uniporter (MCU) is the critical protein of the inner mitochondrial membrane mediating the electrophoretic Ca²⁺ uptake into the matrix. It plays a fundamental role in the shaping of global calcium signaling and in the control of aerobic metabolism as well as apoptosis. Two features of mitochondrial calcium signaling have been known for a long time: i) mitochondrial Ca²⁺ uptake widely varies among cells and tissues, and ii) channel opening strongly relies on the extramitochondrial Ca²⁺ concentration, with low activity at resting [Ca²⁺] and high capacity as soon as calcium signaling is activated. Such complexity requires a specialized molecular machinery, with several primary components can be variably gathered together in order to match energy demands and protect from toxic stimuli. In line with this, MCU is now recognized to be part of a macromolecular complex known as the MCU complex. Our understanding of the structure and function of the MCU complex is now growing promptly, revealing an unexpected complexity that highlights the pleiotropic role of mitochondrial Ca²⁺ signals. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

Keywords: Calcium; MCU; MCUb; MICU1; MICU2; Mitochondria.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Calcium / chemistry
  • Calcium / metabolism*
  • Calcium Channels / chemistry
  • Calcium Channels / metabolism*
  • Calcium Signaling / physiology*
  • Humans
  • Mitochondria / chemistry
  • Mitochondria / metabolism*
  • Protein Structure, Quaternary
  • Structure-Activity Relationship

Substances

  • Calcium Channels
  • mitochondrial calcium uniporter
  • Calcium