Exploring the tumor microenvironment with nanoparticles

Cancer Treat Res. 2015:166:193-226. doi: 10.1007/978-3-319-16555-4_9.

Abstract

Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. While enhanced permeability and retention effect (EPR) promotes nanoparticle (NP) extravasation, the abnormal tumor vasculature, high interstitial pressure and dense stroma structure limit homogeneous intratumoral distribution of NP and compromise their imaging and therapeutic effect. Moreover, heterogeneous distribution of NP in nontumor-stroma cells damages the nontumor cells, and interferes with tumor-stroma crosstalk. This can lead to inhibition of tumor progression, but can also paradoxically induce acquired resistance and facilitate tumor cell proliferation and metastasis. Overall, the tumor microenvironment plays a crucial, yet controversial role in regulating NP distribution and their biological effects. In this review, we summarize recent studies on the stroma barriers for NP extravasation, and discuss the consequential effects of NP distribution in stroma cells. We also highlight design considerations to improve NP delivery and propose potential combinatory strategies to overcome acquired resistance induced by damaged stroma cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Drug Delivery Systems / methods*
  • Humans
  • Nanoconjugates / therapeutic use*
  • Nanomedicine / methods*
  • Neoplasms / drug therapy
  • Tissue Distribution
  • Tumor Microenvironment / drug effects*

Substances

  • Nanoconjugates