Aqueous manganese dioxide ink for paper-based capacitive energy storage devices

Angew Chem Int Ed Engl. 2015 Jun 1;54(23):6800-3. doi: 10.1002/anie.201501261. Epub 2015 Apr 17.

Abstract

We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long-term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g(-1) (91.7 mF cm(-2)). Paper-based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg(-1) and a power density of 81 kW kg(-1). The device could maintain a 98.9% capacitance retention over 10 000 cycles at 4 A g(-1). The MnO2 ink could be a versatile candidate for large-scale production of flexible and printable electronic devices for energy storage and conversion.

Keywords: MnO2 ink; electrochemistry; energy-storage devices; metal oxides; thin films.