Rigidity loss in disordered systems: three scenarios

Phys Rev Lett. 2015 Apr 3;114(13):135501. doi: 10.1103/PhysRevLett.114.135501. Epub 2015 Apr 1.

Abstract

We reveal significant qualitative differences in the rigidity transition of three types of disordered network materials: randomly diluted spring networks, jammed sphere packings, and stress-relieved networks that are diluted using a protocol that avoids the appearance of floppy regions. The marginal state of jammed and stress-relieved networks are globally isostatic, while marginal randomly diluted networks show both overconstrained and underconstrained regions. When a single bond is added to or removed from these isostatic systems, jammed networks become globally overconstrained or floppy, whereas the effect on stress-relieved networks is more local and limited. These differences are also reflected in the linear elastic properties and point to the highly effective and unusual role of global self-organization in jammed sphere packings.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Biopolymers / chemistry
  • Elasticity
  • Models, Theoretical*

Substances

  • Biopolymers