Methyl Cinnamate-Derived Fluorescent Rigid Organogels Based on Cooperative π-π Stacking and C═O···π Interactions Instead of H-Bonding and Alkyl Chains

Langmuir. 2015 May 5;31(17):4916-23. doi: 10.1021/acs.langmuir.5b00275. Epub 2015 Apr 22.

Abstract

A new class of rigid low-molecular-mass organic gelators (LMOGs) was synthesized by McMurry and Heck reactions, and their gels and photophysical properties were investigated. The LMOGs lacked alkyl chain and H-bonding units and produced good gelation ability in selected mixed organic solvents facilitated by cooperative π-π stacking and C═O···π interactions. Sensitive gel-sol transformation by molecular aggregation and disaggregation was easily achieved upon heating and cooling. H-H 2D NOESY and X-ray diffraction (XRD) patterns showed the π-π stacking and C═O···π interactions between tiny methyl acrylate groups as "tails". Importantly, this soft interaction model offers a useful tool for the future design and construction of supramolecular structures. At present, the LMOGs reported herein offer a sensitive gel-formation ability and aggregation-induced emission (AIE) property and thus have promising application potentials as functional soft matter in amorphous materials, photoelectric materials, and so on.