Investigating the surface state of graphene quantum dots

Nanoscale. 2015 May 7;7(17):7927-33. doi: 10.1039/c5nr01178g.

Abstract

A universal route to GQDs is developed based on "solution phase-based scissor" methods. The PL centers of the GQDs are systematically studied and are proved to be the surface state. This is related to the hybridization structure of the edge groups and the connected partial graphene core. Through experiment and analysis, we have preliminarily proved that the efficient edge groups for green emission are mainly carboxyl, carbonyl and amide. This is indicated by the following three factors: firstly, the PL of GQDs is enhanced by UV exposure, during which partial -OH groups are converted into carboxyl groups; secondly, the PL properties of GQDs can be further improved by one-step solvothermal treatment, in which partial carboxyl groups are converted to amide groups and the surface state of the GQDs is enhanced; thirdly, reduced m-GQDs possess more -OH groups compared with reduced GQDs, resulting in more blue PL centers (the carboxyl, carbonyl and amide-based green centers are converted to -OH-based blue centers). The present work highlights a very important direction for the understanding of the PL mechanism of GQDs and other related carbon-based materials.

Publication types

  • Research Support, Non-U.S. Gov't