Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films

Nano Lett. 2015 May 13;15(5):3236-40. doi: 10.1021/acs.nanolett.5b00440. Epub 2015 Apr 16.

Abstract

We report an ultraclean, cost-effective, and easily scalable method of transferring and patterning large-area graphene using pressure sensitive adhesive films (PSAFs) at room temperature. This simple transfer is enabled by the difference in wettability and adhesion energy of graphene with respect to PSAF and a target substrate. The PSAF-transferred graphene is found to be free from residues and shows excellent charge carrier mobility as high as ∼17,700 cm(2)/V·s with less doping compared to the graphene transferred by thermal release tape (TRT) or poly(methyl methacrylate) (PMMA) as well as good uniformity over large areas. In addition, the sheet resistance of graphene transferred by recycled PSAF does not change considerably up to 4 times, which would be advantageous for more cost-effective and environmentally friendly production of large-area graphene films for practical applications.

Keywords: Clean transfer; adhesion energy; graphene patterning; supporting polymer recycle; surface wetting.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.