Theoretical investigation of tensile strained GeSn waveguide with Si₃N₄ liner stressor for mid-infrared detector and modulator applications

Opt Express. 2015 Mar 23;23(6):7924-32. doi: 10.1364/OE.23.007924.

Abstract

We theoretically investigate a tensile strained GeSn waveguide integrated with Si₃N₄ liner stressor for the applications in mid-infrared (MIR) detector and modulator. A substantial tensile strain is induced in a 1 × 1 μm² GeSn waveguide by the expansion of 500 nm Si₃N₄ liner stressor and the contour plots of strain are simulated by the finite element simulation. Under the tensile strain, the direct bandgap E(G,Γ) of GeSn is significantly reduced by lowering the Γ conduction valley in energy and lifting of degeneracy of valence bands. Absorption coefficients of tensile strained GeSn waveguides with different Sn compositions are calculated. As the Si₃N₄ liner stressor expands by 1%, the cut-off wavelengths of tensile strained Ge(0.97)Sn(0.03), Ge(0.95)Sn(0.05), and Ge(0.90)Sn(0.10) waveguide photodetectors are extended to 2.32, 2.69, and 4.06 μm, respectively. Tensile strained Ge(0.90)Sn(0.10) waveguide electro-absorption modulator based on Franz-Keldysh (FK) effect is demonstrated in theory. External electric field dependence of cut-off wavelength and propagation loss of tensile strained Ge(0.90)Sn(0.10) waveguide is observed, due to the FK effect.