Differential absorption lidar for volcanic CO(2) sensing tested in an unstable atmosphere

Opt Express. 2015 Mar 9;23(5):6634-44. doi: 10.1364/OE.23.006634.

Abstract

Motivated by the need for an extremely durable and portable instrument to quantify volcanic CO(2) we have produced a corresponding differential absorption lidar (DIAL). It was tested on a volcano (Vulcano, Italy), sensing a non-uniform volcanic CO(2) signal under turbulent atmospheric conditions. The measured CO(2) mixing ratio trend agrees qualitatively well but quantitatively poorly with a reference CO(2) measurement. The disagreement is not in line with the precision of the DIAL determined under conditions that largely exclude atmospheric effects. We show evidence that the disagreement is mainly due to atmospheric turbulence. We conclude that excluding noise associated with atmospheric turbulence, as commonly done in precision analysis of DIAL instruments, may largely underestimate the error of measured CO(2) concentrations in turbulent atmospheric conditions. Implications for volcanic CO(2) sensing with DIAL are outlined.