Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery

Nanotechnology. 2015 Apr 24;26(16):164003. doi: 10.1088/0957-4484/26/16/164003. Epub 2015 Apr 1.

Abstract

Uniformly dispersed Pd nanoparticles on ZnO-passivated porous carbon were synthesized via an atomic layer deposition (ALD) technique, which was tested as a cathode material in a rechargeable Li-O2 battery, showing a highly active catalytic effect toward the electrochemical reactions-in particular, the oxygen evolution reaction. Transmission electron microscopy (TEM) showed discrete crystalline nanoparticles decorating the surface of the ZnO-passivated porous carbon support in which the size could be controlled in the range of 3-6 nm, depending on the number of Pd ALD cycles performed. X-ray absorption spectroscopy (XAS) at the Pd K-edge revealed that the carbon-supported Pd existed in a mixed phase of metallic palladium and palladium oxide. The ZnO-passivated layer effectively blocks the defect sites on the carbon surface, minimizing the electrolyte decomposition. Our results suggest that ALD is a promising technique for tailoring the surface composition and structure of nanoporous supports for Li-O2 batteries.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.