Structural, spectroscopic and computational examination of the dative interaction in constrained phosphine-stibines and phosphine-stiboranes

Chemistry. 2015 May 11;21(20):7520-31. doi: 10.1002/chem.201500281. Epub 2015 Mar 27.

Abstract

A series of phosphine-stibine and phosphine-stiborane peri-substituted acenaphthenes containing all permutations of pentavalent groups -SbCln Ph4-n (5-9), as well as trivalent groups -SbCl2 , -Sb(R)Cl, and -SbPh2 (2-4, R=Ph, Mes), were synthesised and fully characterised by single crystal diffraction and multinuclear NMR spectroscopy. In addition, the bonding in these species was studied by DFT computational methods. The P-Sb dative interactions in both series range from strongly bonding to non-bonding as the Lewis acidity of the Sb acceptor is decreased. In the pentavalent antimony series, a significant change in the P-Sb distance is observed between -SbClPh3 and -SbCl2 Ph2 derivatives 6 and 7, respectively, consistent with a change from a bonding to a non-bonding interaction in response to relatively small modification in Lewis acidity of the acceptor. In the Sb(III) series, two geometric forms are observed. The P-Sb bond length in the SbCl2 derivative 2 is as expected for a normal (rather than a dative) bond. Rather unexpectedly, the phosphine-stiborane complexes 5-9 represent the first examples of the σ(4) P→σ(6) Sb structural motif.

Keywords: antimony; dative bond; donor-acceptor systems; phosphorus; synthesis.