Expression and Characterization of a Recombinant Laccase with Alkalistable and Thermostable Properties from Streptomyces griseorubens JSD-1

Appl Biochem Biotechnol. 2015 May;176(2):547-62. doi: 10.1007/s12010-015-1594-2. Epub 2015 Mar 29.

Abstract

Streptomyces griseorubens JSD-1 is a novel actinomycete that could grow efficiently upon lignin, and the ligninolytic genes active in this biotransformation were expected to be crucial. To investigate the molecular mechanism of utilizing lignin, genome sequencing was carried out to obtain its draft genome, which was deposited at GenBank under the accession No. JJMG00000000. Multiple copper oxidase (MCO) was obtained, which proved to be an extracellular enzyme and have relative high expression with the stimulation of ligninolytic materials. Judging from its putative 3D structure, the N-terminal of MCO was bared, which was fit for the linkage of poly-HIS10 tag. As a result, heterogeneous expression conditions of recombinant laccase was achieved with TransB(DE3) grown in a modified terrific broth (TB) medium with an extra addition of 0.5% glucose at 30 °C until optical density at 600 nm (OD600) reached 0.8 when expression was induced by 25 μM isopropyl β-D-1-thiogalactopyranoside (IPTG) and also 100 μM copper sulphate as supplement. Finally, it exhibited special characters of thermal robustness, alkaline activity profiles, high resistance to metallic ions and chemical inhibitors as well as dye decolourization. In summary, our findings illustrated the genetic basic of utilizing lignin in this isolate. Additionally, a novel laccase expected to be potential in agricultural and industrial application was expressed and characterized as well.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins* / biosynthesis
  • Bacterial Proteins* / chemistry
  • Bacterial Proteins* / genetics
  • Bacterial Proteins* / isolation & purification
  • Enzyme Stability
  • Gene Expression*
  • Laccase* / biosynthesis
  • Laccase* / chemistry
  • Laccase* / genetics
  • Laccase* / isolation & purification
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / isolation & purification
  • Streptomyces / enzymology
  • Streptomyces / genetics*

Substances

  • Bacterial Proteins
  • Recombinant Proteins
  • Laccase